

Hilo tórico EP-10

Descripción

- Hilo tórico en elastómero
- Hilo extruido de sección circular
- Suministrado enrollado en rollos
- La longitud del hilo en cada rollo depende del diámetro del hilo

Características especiales

- Disponible en numerosos diámetros de hilo
- 4 materiales estándar suministrables en almacén
- Confeccionable a cualquier longitud desde el rollo

Aplicaciones

- Material base para la fabricación de anillos de hilo tórico
- Juntas estáticas para requisitos de estanqueización sencillos
- Estanqueización de bridas o tapas grandes
- Aplicable como elemento constructivo elástico
- Confeccionable in situ en caso de reparaciones

Descripción general de los materiales:

Caucho de acrilonitrilo butadieno - NBR

NBR es el material más utilizado en el ámbito de las juntas estándar, lo que se debe a sus buenas propiedades mecánicas, la buena resistencia a la abrasión, la escasa permeabilidad al gas y la buena resistencia a los aceites y grasas minerales.

NBR es resistente a:

- aceites y grasas minerales
- hidrocarburos alifáticos
- aceites y grasas vegetales y animales
- aceites hidráulicos H, H-L, H-LP
- In fluidos hidráulicos HFA, HFB, HFC
- aceites y grasas de silicona
- agua (máx. 80°C)

NBR no es resistente a:

- carburantes con alto contenido aromático
- hidrocarburos aromáticos
- hidrocarburos clorados
- solventes polares
- fluidos hidráulicos HFD
- líquidos de frenos a base de glicol
- ozono, agentes atmosféricos, envejecimiento

Materiales

Elastómeros estándar

Material	Dureza	Color	Reticulación	Rango de temperaturas [°C]
NBR	70	negro	azufre	-30 a +100
FKM	75	negro	bisfenólica	-15 a +200
EPDM	70	negro	peróxido	-35 a +140
VMQ (Silicon)	60	rojo	peróxido	-55 a +200
	Cumple con la FDA, con informe de prueba según FDA 21CFR 177.2600			

Otros materiales, durezas y colores están disponibles a solicitud.

Caucho fluorado - FKM

Los materiales FKM se han impuesto en muchas aplicaciones que requieren una elevada resistencia térmica y/o química. El FKM cuenta además con excelentes características de resistencia al ozono, los agentes atmosféricos y el envejecimiento. El FKM resulta recomendable para aplicaciones en vacío gracias a su muy baja permeabilidad al gas.

FKM es resistente a:

- aceites y grasas minerales
- hidrocarburos alifáticos
- hidrocarburos aromáticos
- hidrocarburos clorados
- In fluidos hidráulicos HFD
- aceites y grasas vegetales y animales
- aceites y grasas de silicona
- carburantes
- disolventes no polares
- ozono, agentes atmosféricos, envejecimiento

FKM no es resistente a:

- líquidos de frenos a base de glicol
- disolventes polares (por ejemplo acetona)
- vapor de agua sobrecalentada
- agua caliente
- aminas, álcalis
- ácidos orgánicos de bajo peso molecular (por ejemplo ácido acético)

Caucho de etileno propileno dieno - EPDM

El EPDM se distingue por un amplio rango de temperaturas de trabajo, una buena resistencia al ozono, los agentes atmosféricos y el envejecimiento y una buena resistencia al agua caliente y el vapor.

EPDM es resistente a:

- agua caliente y vapor caliente
- muchos disolventes polares (por ejemplo alcoholes, cetonas, ésteres)
- muchos ácidos y bases orgánicos y anorgánicos
- detergentes
- aceites y grasas de silicona
- ozono, agentes atmosféricos, envejecimiento

EPDM no es resistente a:

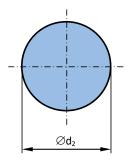
 cualquier tipo de derivados del aceite mineral (aceites, grasas, carburantes)

Caucho de silicona - VMQ

Los materiales siliconados presentan una excelente resistencia de envejecimiento por causa de oxígeno, ozono, radiación ultravioleta y agentes atmosféricos, así como un rango de temperaturas de trabajo sumamente amplio con una sobresaliente flexibilidad a bajas temperaturas.

Gracias a su inocuidad fisiológica, la silicona es adecuada para el sector alimentario y sanitario. La silicona brinda un buen aislamiento eléctrico y una elevada permeabilidad al gas. Debido a las deficientes propiedades mecánicas de la silicona, las juntas tóricas de este material se destinan de preferencia a aplicaciones estáticas.

- La silicona es resistente a:
- aceites y grasas animales y vegetales
- agua (máx.100°C)
- aceites para motores y engranajes alifáticos ozono, agentes atmosféricos, envejecimiento
- La silicona no es resistente a:
- aceites y grasas de silicona
- aceites minerales aromáticos
- carburantes
- vapor de agua a más de 120°C ácidos y álcalis



Tolerancias

Tolerancias del espesor del hilo según DIN ISO 3302-1 Clase de tolerancia E1para NBR 70, FKM 75 y EPDM 70

Clase de tolerancia E2 para VMQ 60

Dimensión nominal ø d2		Clase de tolerancia	
de	а	E1	E2
[mm]	[mm]	[mm]	[mm]
0	1,5	±0,15	±0,25
1,5	2,5	±0,20	±0,35
2,5	4,0	±0,25	±0,40
4,0	6,3	±0,35	±0,50
6,3	10	±0,40	±0,70
10	16	±0,50	±0,80
16	25	±0,70	±1,00
25	40	±0,80	±1,30
40	63	±1,00	±1,60

Adhesión

Para convertir el hilo en anillos de hilo tórico debería utilizarse un adhesivo de cianoacrilato o de dos componentes adecuado.

Buenos resultados pueden obtenerse, por ejemplo, con los siguientes adhesivos:

Material	Adhesivo	Imprimador	Resistencia térmica de la zona de adhesión
NBR	Loctite® 406		80°C
FKM	Loctite® 406	Loctite® Primer 770	80°C
EPDM	Loctite® 406	Loctite® Primer 770	80°C
VMQ (silicona)	Loctite® 406	Loctite® Primer 770	80°C

- Desbastar levemente las zonas de adhesión con papel de lija antes de aplicar adhesivo
- Desengrasar las zonas de adhesión con un disolvente adecuado
- Pretratar las zonas de adhesión con un imprimador (recomendado para FKM, EPDM y VMQ)
- Adherir conforme a las especificaciones del fabricante

La zona de adhesión define la resistencia máxima en cuanto a temperatura, expansión, etc.

Montaje

El funcionamiento fiable de una junta depende también de su montaje correcto. El hilo tórico tiene que estar montado sin desperfectos. Observe las siguientes instrucciones durante el montaje:

- Antes de proceder al montaje de la junta de estanqueidad, se deben eliminar residuos de mecanizado en todos los componentes implicados, por ejemplo virutas e impurezas.
- La junta de estanqueidad y el espacio de montaje deberían lubricarse con una grasa adecuada antes del montaje (compruebe la compatibilidad del lubricante con el material de la junta).
- Todos los componentes del espacio de montaje tienen que estar provistos de chaflanes de entrada.
- Desrebabe cuidadosamente las aristas vivas o sustitúyalas de preferencia ya en el diseño por biseles o radios correspondientes.
- No pase las juntas de estanqueidad en ningún caso por aristas vivas. Roscas, chaveteros, agujeros, etc. deberían estar tapados durante el montaje.
- El hilo tórico no debe hacerse rodar durante el montaje, ni colocarse sobre todo provisto de torsiones en la ranura.